Baghel
Institute
Baghel
Institute
Baghel
Institute
DOAP
DOAP
DOAP
Diploma In Office Automation & Publishing
DURATION 1 YEAR
Eligibility 10th / 12th
SEMESTER - 1
-
Computer Concept & Fundamentals
-
Operating System
-
MS-Office (MS-Word, MS- Excel, MS-PowerPoint, MS-Access)
-
HTML & Front Page
-
Lab-I
SEMESTER - 2
-
Basics of Financial Accounting
-
Computerized Accounting Through Tally
-
D.T.P. (Page Maker, Corel Draw, Photoshop)
-
Computer Network & Internet
-
Lab-II
Diploma In Office Automation & Publishing
DURATION 1 YEAR
Eligibility 10th / 12th
SEMESTER - 1
-
Computer Concept & Fundamentals
-
Operating System
-
MS-Office (MS-Word, MS- Excel, MS-PowerPoint, MS-Access)
-
HTML & Front Page
-
Lab-I
SEMESTER - 2
-
Basics of Financial Accounting
-
Computerized Accounting Through Tally
-
D.T.P. (Page Maker, Corel Draw, Photoshop)
-
Computer Network & Internet
-
Lab-II
Diploma In Office Automation & Publishing
DURATION 1 YEAR
Eligibility 10th / 12th
SEMESTER - 1
-
Computer Concept & Fundamentals
-
Operating System
-
MS-Office (MS-Word, MS- Excel, MS-PowerPoint, MS-Access)
-
HTML & Front Page
-
Lab-I
SEMESTER - 2
-
Basics of Financial Accounting
-
Computerized Accounting Through Tally
-
D.T.P. (Page Maker, Corel Draw, Photoshop)
-
Computer Network & Internet
-
Lab-II
Sensors, actuators and micro controller
3.1 Introduction
• Measurement Systems:
• Essential in mechanical and electronic systems.
• Components: Sensors, actuators, transducers, and signal processing devices.
• Used for measuring and performing tasks, e.g., triggering an LED or reading a switch signal.
• Mechatronics Systems:
• Combines sensors, controllers, and actuators for closed-loop control.
• Components:
• Sensing Unit: May include filters, amplifiers, and signal conditioners.
• Controller: Processes information and executes control algorithms.
• Actuating Unit: Includes actuators, power supply, and coupling mechanisms.
• Linear and Rotational Position Sensors:
• Fundamental measurements in mechatronics systems.
• Example: IoT devices, which connect sensors and actuators to the internet for data transfer.
3.2 Sensors
• Definition: Devices that sense physical changes and convert them into measurable signals.
• Example: Mercury thermometer measures temperature using liquid expansion.
• Output Signals: Electrical, mechanical, or magnetic.
• Role in IoT:
• Automates and centralizes control.
• Examples:
• Medical Monitoring: Tracks blood pressure, sugar levels.
• Energy Conservation: Adjusts appliance settings for optimal use.
• Smart Refrigerators: Suggests inventory replenishment.
• Sensors vs. Transducers:
• Sensor: Detects changes in physical phenomena.
• Transducer: Converts energy from one form to another.
• Example: Thermocouple converts heat (thermal energy) to voltage (electrical energy).
• Types of Transducers:
• Active Transducers: Require external power (e.g., strain gauge).
• Passive Transducers: Use input energy directly (e.g., thermocouple).
Multiple-Choice Questions (MCQs)
1. What is the primary function of a sensor in a system?
A. To control energy
B. To sense and measure physical changes
C. To generate output signals
D. To convert one form of energy into another
Answer: B
2. Which of the following is a passive transducer?
A. Strain gauge
B. Thermocouple
C. Accelerometer
D. Potentiometer
Answer: B
3. What component of a mechatronics system executes control algorithms?
A. Sensor
B. Controller
C. Actuator
D. Transducer
Answer: B
4. How does IoT improve efficiency in energy conservation?
A. By detecting signals from switches
B. By suggesting optimal settings and automating controls
C. By manually adjusting temperature
D. By turning off devices remotely
Answer: B
5. What type of output does an active transducer produce?
A. Analog signal
B. Digital signal
C. Proportional output with external power
D. Voltage without external power
Answer: C
3.3 Classification of Sensors
• Based on Power Requirement:
• Active Sensors: Require external power (e.g., strain gauge).
• Passive Sensors: Use energy from the measurand (e.g., thermocouple).
• Based on Output Type:
• Analog Sensors:
• Produce continuous signals.
• Example: Speed, temperature, and pressure sensors.
• Digital Sensors:
• Produce discrete signals (ON/OFF).
• Example: Push-button switch.
• Special Sensors:
• Inverse Sensors: Convert physical quantities and reverse signals.
• Example: Piezoelectric crystals in microphones and speakers.
Applications of Sensors
• Proximity: Detect object presence (e.g., Infrared, Ultrasonic sensors).
Example: Mobile phones, parking sensors.
• Temperature: Measure heat (e.g., Thermistor, RTDs).
Example: Air conditioning systems, mobile phones.
• Position: Detect motion or orientation (e.g., Accelerometers, Gyroscopes).
Example: Navigation systems.
• Pressure: Measure force (e.g., Strain gauges).
Example: Hydraulic systems.
• Sound: Capture and output sound (e.g., Microphones, speakers).
Example: Audio devices.
• Speed: Measure velocity (e.g., Tachometers, Ultrasonic sensors).
Example: Vehicle speedometers.
MCQs for Applications
1. Which sensor is used in parking assistance systems?
A. Thermistor
B. Proximity sensor
C. Gyroscope
D. Microphone
Answer: B
2. What type of sensor measures changes in velocity?
A. Pressure sensor
B. Accelerometer
C. Infrared sensor
D. Strain gauge
Answer: B
3. What is an example of a digital sensor?
A. Push-button switch
B. RTD
C. Thermistor
D. Ultrasonic sensor
Answer: A
4. Which of these is classified as a temperature sensor?
A. Accelerometer
B. Thermistor
C. Piezoelectric crystal
D. Hall Effect sensor
Answer: B
5. How does a piezoelectric crystal respond to vibrations?
A. By changing its shape
B. By producing voltage
C. By generating heat
D. By emitting light
Answer: B
3.4 Types of Sensors
3.4.1 Position Sensor
• Measures the position of an object.
• Types:
• Absolute Position Sensor: Measures a fixed position.
• Displacement Sensor: Measures relative position.
• Can be linear, angular, or multi-axis.
3.4.2 Occupancy and Motion Sensors
• Occupancy Sensors: Detect the presence of people or animals in an area.
• Generate signals even when the object is stationary.
• Motion Sensors: Detect movement of people or objects.
• Do not signal when the object is stationary.
• Examples: Electric eye, Radar.
3.4.3 Velocity and Acceleration Sensors
• Measure the speed of motion.
• Velocity Sensors: Measure linear or angular velocity.
• Acceleration Sensors: Detect changes in velocity.
• Example: Accelerometer.
3.4.4 Force Sensors
• Detect the application of physical force.
• Examples: Force gauge, Viscometer, Tactile sensor (touch sensor).
3.4.5 Pressure Sensors
• Measure force applied by liquids or gases, typically as force per unit area.
• Enable IoT systems to monitor pressure variations.
• Examples: Barometer, Bourdon gauge, Piezometer.
3.4.6 Flow Sensors
• Detect the rate of fluid flow, either volume (mass flow) or rate (flow velocity).
• Examples: Anemometer, Mass flow sensor, Water meter.
3.4.7 Acoustic Sensors
• Measure sound levels and convert them into digital or analog signals.
• Examples: Microphone, Geophone, Hydrophone.
3.4.8 Humidity Sensors
• Measure the amount of water vapor in the air or a mass.
• Widely used in consumer, industrial, and environmental applications.
• Examples: Hygrometer, Humistor, Soil moisture sensor.
3.4.9 Light Sensors
• Detect visible or invisible light.
• Examples: Infrared sensor, Photodetector, Flame detector.
3.4.10 Radiation Sensors
• Detect radiation in the environment using scintillation or ionization methods.
• Examples: Scintillator, Neutron detector.
3.4.11 Temperature Sensors
• Measure heat or cold in a system.
• Types:
• Contact Sensors: Require physical contact.
• Non-contact Sensors: Measure via radiation or convection.
• Examples: Thermometer, Calorimeter.
3.4.12 Chemical Sensors
• Measure chemical concentrations in a system.
• Used in industries to monitor air or liquid chemical changes.
• Examples: Breathalyzer, Smoke detector.
3.4.13 Image Sensors
• Convert optical images into electronic signals.
• Used in digital cameras, medical imaging, and night vision equipment.
3.4.14 Optical Sensors
• Measure light rays and convert them into readable electrical signals.
• Examples: Photodetector, Fiber optics, Pyrometer.
3.4.15 Gas Sensors
• Detect gas presence or leakage.
• Common in industries for air quality monitoring and safety.
• Examples: Toxic gas detectors, Combustible gas monitors.
3.4.16 Ultrasonic Sensors
• Use sound waves (>20 kHz) to detect objects or measure distances.
• Similar to radar or sonar.
3.4.17 Hall Effect Sensors
• Detect magnetic fields by measuring voltage differences across a current-carrying conductor.
3.4.18 Infrared (IR) Sensors
• Detect infrared radiation and measure emitted heat.
• Widely used in healthcare and smart devices.
3.4.19 Biosensors
• Detect biological changes and convert them into electrical signals.
• Examples: Glucometers, Electrochemical biosensors.
3.4.20 Micro and Nano Sensors
• Miniaturized sensors for advanced applications.
• Used in medical technology, such as fiberscopes and micro-tactile sensors.
Multiple-Choice Questions (MCQs)
1. What type of sensor measures the presence of people even if they are stationary?
A. Velocity Sensor
B. Motion Sensor
C. Occupancy Sensor
D. Force Sensor
Answer: C
2. Which of these sensors is used to detect sound levels?
A. Geophone
B. Hygrometer
C. Flame Detector
D. Thermocouple
Answer: A
3. What does a Hall Effect sensor detect?
A. Temperature
B. Magnetic Fields
C. Pressure
D. Fluid Flow
Answer: B
4. Which sensor detects the rate of fluid flow?
A. Pressure Sensor
B. Flow Sensor
C. Acoustic Sensor
D. Biosensor
Answer: B
5. Which type of sensor works with frequencies above 20 kHz?
A. Optical Sensor
B. Ultrasonic Sensor
C. Chemical Sensor
D. Image Sensor
Answer: B
3.5 Criteria to Choose a Sensor
When selecting a sensor to measure a physical parameter, several static and dynamic factors must be considered. Below are the key factors:
1. Range:
• Difference between the maximum and minimum values the sensor can measure.
2. Resolution:
• Smallest detectable change the sensor can differentiate.
3. Accuracy:
• The difference between the measured value and the true value.
4. Precision:
• The ability to produce consistent results with a given accuracy in repeated measurements.
5. Sensitivity:
• Ratio of change in the sensor’s output to a unit change in the input value.
6. Ruggedness:
• Durability of the sensor under extreme operating conditions.
7. Linearity:
• The percentage deviation from the ideal linear calibration curve.
8. Hysteresis:
• Maximum difference in output at any measured value when the input increases and then decreases.
9. Response Time:
• Time lag between the input signal and the sensor’s output.
10. Bandwidth:
• Frequency at which the output magnitude drops.
11. Resonance:
• Frequency at which the sensor’s output magnitude peaks.
12. Operating Temperature:
• Temperature range within which the sensor functions properly.
13. Signal-to-Noise Ratio:
• Ratio between the magnitude of the output signal and noise.
14. Type of Sensing:
• The physical parameter being measured, such as temperature or pressure.
15. Power Consumption:
• Amount of power the sensor consumes.
16. Cost:
• Selection depends on the application’s budget and whether a low-cost or high-cost sensor is required.
17. Repeatability:
• The sensor’s ability to produce the same output for identical input conditions across different instances.
18. Stability:
• Ability to maintain consistent output for a constant input over time.
3.6 Actuators
• Actuators convert energy or information from sensors into physical action.
• Purpose: Perform tasks such as moving objects, heating, cooling, or controlling systems.
• Basic Components:
1. Control Command: Typically an electrical signal.
2. Power Supply: Provides AC or DC power at rated voltage and current.
3. Coupling Mechanism: Interfaces the actuator with the physical system, e.g., rack and pinion, gear drive.
• Function:
• Converts input energy into motion or mechanical energy.
• Used in conjunction with mechanisms like screws, pistons, and linkages.
3.7 Classification of Actuators
Actuators can be classified based on type of energy or motion:
1. Based on Energy Source:
1. Electrical Actuators: Powered by electricity (e.g., motors).
2. Electromechanical Actuators: Combine electrical and mechanical functions (e.g., solenoids).
3. Electromagnetic Actuators: Utilize magnetic fields for motion.
4. Hydraulic Actuators: Use fluid pressure.
5. Pneumatic Actuators: Operate using air pressure.
6. Smart Material Actuators: Made with materials that respond to external stimuli (e.g., piezoelectric actuators).
7. Micro/Nano Actuators: Miniaturized for advanced applications.
2. Based on Output States:
1. Binary Actuators: Have two stable states (e.g., relays).
2. Continuous Actuators: Provide incremental stable outputs (e.g., stepper motors).
3. Based on Motion:
1. Linear Actuators:
• Produce straight-line motion.
• Often used for push/pull applications.
2. Rotary Actuators:
• Provide rotary motion.
Multiple-Choice Questions (MCQs)
1. Which factor determines the smallest change a sensor can detect?
A. Linearity
B. Resolution
C. Stability
D. Hysteresis
Answer: B
2. What is the purpose of an actuator?
A. Convert energy into motion
B. Measure physical parameters
C. Generate electrical signals
D. Store mechanical energy
Answer: A
3. Which actuator type is powered by air pressure?
A. Hydraulic
B. Pneumatic
C. Electromechanical
D. Smart Material
Answer: B
4. What does hysteresis in a sensor indicate?
A. Accuracy deviation
B. Difference in output during input increase and decrease
C. Durability under extreme conditions
D. Time lag in response
Answer: B
5. What is an example of a continuous actuator?
A. Relay
B. Stepper Motor
C. Solenoid
D. Hydraulic Pump
Answer: B
3.7 Classification of Actuators
Actuators are devices that convert energy into motion or mechanical energy. Below is a detailed classification including key concepts, additional details, and explanations in Hindi for tough keywords.
3.7.1 Electrical Actuators (इलेक्ट्रिकल एक्ट्यूएटर्स)
• Definition (परिभाषा): Electrical actuators are electromechanical devices that convert electrical energy into mechanical energy (यांत्रिक ऊर्जा में परिवर्तित)।
• Working Principle (कार्य सिद्धांत):
• Operates through the interaction of magnetic fields (चुंबकीय क्षेत्र) and current-carrying conductors (विद्युत प्रवाह ले जाने वाले चालक)।
• Commonly used for on-off type control actions.
• Applications (उपयोग):
• Industrial fans, pumps, household appliances, power tools, disk drives (डिस्क ड्राइव)।
• Advantages (लाभ):
• Clean and oil-free operation (तेल-मुक्त संचालन)।
• Readily available and efficient.
3.7.2 Electromechanical Actuators (इलेक्ट्रोमैकेनिकल एक्ट्यूएटर्स)
• Definition (परिभाषा): These actuators convert electrical energy into mechanical motion (यांत्रिक गति)।
Types of Electromechanical Actuators (इलेक्ट्रोमैकेनिकल एक्ट्यूएटर्स के प्रकार):
1. DC Motors (डीसी मोटर):
• Operate at variable speeds (परिवर्ती गति)।
• Commutator (कम्यूटेटर) switches the rotor field to control speed and positioning.
• Applications: Used in robotics, vehicles, and appliances.
2. AC Motors (एसी मोटर):
• Operate at constant speed (स्थिर गति)।
• Types of AC Motors:
a. Induction Motors (इंडक्शन मोटर):
• Simple, powerful, maintenance-free.
• Used in pumps, steel mills, and hoists.
b. Synchronous Motors (सिंक्रोनस मोटर):
• High efficiency; operates at synchronous speed (समकालिक गति)।
• Reduces power costs in industries.
c. Universal Motors (यूनिवर्सल मोटर):
• Operate with both AC and DC power.
• High power-to-weight ratio (अधिक शक्ति-से-वजन अनुपात)।
3. Stepper Motors (स्टेपर मोटर):
• Convert digital pulses into rotational motion (डिजिटल पल्स को घूर्णी गति में परिवर्तित)।
• Applications: Used in industrial control systems, robotics, and CNC machines.
4. Servo Motors (सर्वो मोटर):
• Provide precise speed and position control (सटीक गति और स्थिति नियंत्रण)।
• Compact and cost-effective for high-performance applications.
3.7.3 Electromagnetic Actuators (इलेक्ट्रोमैग्नेटिक एक्ट्यूएटर्स)
• Solenoid Actuators (सोलनॉइड एक्ट्यूएटर्स):
• Use magnetic fields to push or pull an iron core (चुंबकीय क्षेत्र से लोहे के कोर को धक्का देना या खींचना)।
• Common in relays and electromagnetic switches.
• Electromagnets (इलेक्ट्रोमैग्नेट्स):
• Generate large forces and are used in industrial lifting applications (उद्योगों में भारी भार उठाने में उपयोग)।
3.7.4 Hydraulic Actuators (हाइड्रॉलिक एक्ट्यूएटर्स)
• Definition (परिभाषा): Use hydraulic fluid (द्रव) to produce linear, rotary, or oscillating motion (रेखीय, घूर्णी, या दोलन गति)।
• Applications (उपयोग):
• Found in construction equipment like cranes, excavators, and car jacks (क्रेन, खुदाई मशीन, और जैक)।
• Advantages (लाभ):
• Can produce very large forces (अत्यधिक बल उत्पन्न)।
• Disadvantages (हानि):
• Require frequent maintenance (बार-बार रखरखाव) and are less efficient.
3.7.5 Pneumatic Actuators (प्न्यूमेटिक एक्ट्यूएटर्स)
• Definition (परिभाषा): Use compressed gas (संकुचित गैस) instead of liquid to produce motion.
• Applications (उपयोग):
• Common in systems where positional accuracy is not required (जहां सटीकता महत्वपूर्ण नहीं)।
• Disadvantages (हानि):
• Noisy (शोर), bulky (भारी), and difficult to transport (स्थलांतर करना कठिन)।
3.7.6 Smart Material Actuators (स्मार्ट मैटेरियल एक्ट्यूएटर्स)
• Definition (परिभाषा): Use advanced materials that react to external stimuli like heat, voltage, or magnetic fields (बाहरी उत्तेजनाओं जैसे ताप, वोल्टेज, या चुंबकीय क्षेत्र पर प्रतिक्रिया)।
• Types of Smart Material Actuators:
1. Shape Memory Alloys (SMA) (शेप मेमोरी अलॉय):
• Change shape when heated (गर्म होने पर आकार बदलते हैं)।
2. Piezoelectric Actuators (पीजोइलेक्ट्रिक एक्ट्यूएटर्स):
• Expand or contract based on applied voltage (वोल्टेज के अनुसार फैलना या सिकुड़ना)।
3. Magnetostrictive Actuators (मैग्नेटोस्ट्रिक्टिव एक्ट्यूएटर्स):
• Produce mechanical strain in response to a magnetic field (चुंबकीय क्षेत्र पर यांत्रिक विकृति उत्पन्न करते हैं)।
4. Ion Exchange Polymers (आयन एक्सचेंज पॉलिमर्स):
• Mimic muscle movement (मांसपेशियों की गति की नकल)।
3.7.7 Microactuators (माइक्रोएक्ट्यूएटर्स)
• Definition (परिभाषा): Miniature actuators developed using microelectronics processes (माइक्रोइलेक्ट्रॉनिक्स प्रक्रियाओं से विकसित छोटे एक्ट्यूएटर्स)।
• Applications (उपयोग):
• Used in biomedical devices, precision machinery, and robotics (जैव-चिकित्सा उपकरण और रोबोटिक्स में उपयोग)।
Multiple-Choice Questions (MCQs)
1. Which actuator operates using compressed gas?
A. Hydraulic Actuator
B. Pneumatic Actuator
C. Electromagnetic Actuator
D. Smart Material Actuator
Answer: B
2. What is the main advantage of hydraulic actuators?
A. Noise-free operation
B. Generation of very large forces
C. Simple design
D. No maintenance required
Answer: B
3. What type of actuator converts digital pulses into rotational motion?
A. Servo Motor
B. Stepper Motor
C. Universal Motor
D. Piezoelectric Actuator
Answer: B
4. What material is used in Shape Memory Alloys (SMA)?
A. Copper and Zinc
B. Nickel and Titanium
C. Iron and Chromium
D. Aluminum and Nickel
Answer: B
5. Which actuator is ideal for high-speed and positional accuracy?
A. DC Motor
B. Servo Motor
C. Solenoid Actuator
D. Hydraulic Actuator
Answer: B
3.8 Microcontroller
A microcontroller is a compact, self-contained system with a CPU, memory, and input/output (I/O) peripherals integrated into a single chip. It is widely used in embedded systems for specific tasks.
Key Components of a Microcontroller
1. CPU (Central Processing Unit):
• Executes arithmetic, logic, and data operations.
• Acts as the brain of the microcontroller.
2. Memory:
• RAM (Random Access Memory): Temporary data storage during program execution.
• ROM (Read Only Memory): Stores programs permanently.
3. I/O Ports (Input/Output Ports):
• Allow communication between the microcontroller and external devices like sensors, displays, and motors.
4. Peripherals:
• Additional features like ADC (Analog to Digital Converter), DAC (Digital to Analog Converter), and communication interfaces like SPI, I²C, and USB.
Features of a Microcontroller
1. Single-Chip Integration: Combines CPU, memory, and peripherals in one chip.
2. Task-Specific: Designed to execute a single program repeatedly, making it highly efficient.
3. Low Power Consumption: Ideal for battery-operated devices.
4. Compact and Cost-Effective: Reduces the size and cost of embedded systems.
Advantages of Microcontrollers
1. Self-Contained Design: Requires minimal external components.
2. Programmable I/O Ports: Customizable for specific applications.
3. Cost-Efficiency: Reduces the design and manufacturing cost of devices.
4. Energy-Efficient: Built using CMOS technology for lower power consumption.
Disadvantages of Microcontrollers
1. Limited Computational Power: Cannot handle complex tasks.
2. Fixed Memory: Cannot be upgraded for larger programs.
3. Lack of Flexibility: Components are fixed on a single chip.
4. Application-Specific: Designed for specific tasks, limiting versatility.
Applications of Microcontrollers
1. Consumer Electronics: Washing machines, microwaves, and air conditioners.
2. Automotive: Engine control, ABS, and airbag systems.
3. Medical Devices: Glucose meters, heart rate monitors, and medical pumps.
4. Industrial Automation: Robotics, conveyor belts, and monitoring systems.
3.9 Classification of Microcontrollers
Microcontrollers are classified based on bus width, memory structure, instruction set, and I/O pins.
1. Bus Width
Defines the size of the data processed at a time.
• 8-Bit Microcontroller:
• Used for simple tasks.
• Example: Intel 8051.
• 16-Bit Microcontroller:
• Handles more complex tasks with higher precision.
• Example: Intel 8096.
• 32-Bit Microcontroller:
• Suitable for advanced applications like robotics and medical devices.
2. Memory Structure
1. Embedded Memory Microcontroller:
• All memory components are integrated into the chip.
• Example: 8051 Microcontroller.
2. External Memory Microcontroller:
• Requires external memory for storage.
• Example: Intel 8031.
3. Instruction Set
1. CISC (Complex Instruction Set Computer):
• Supports complex instructions directly in hardware.
• Used for general-purpose applications.
2. RISC (Reduced Instruction Set Computer):
• Simplifies instruction execution for faster operations.
4. Number of I/O Pins
• Microcontrollers have different numbers of input/output pins based on application requirements.
• Example: Robotics systems often require microcontrollers with multiple I/O pins.
3.10 Diagram of a Microcontroller
Refer to the diagram above for a visual representation of a microcontroller and its key components.
3.11 Types of Microcontrollers
Microcontrollers are classified into different families based on architecture, features, and applications. Below is a detailed explanation of major microcontroller types.
3.11.1 8051 Microcontroller
• Developed by: Intel (1981).
• Architecture: 8-bit microcontroller with 40 pins.
• Key Features:
• 8-bit CPU processes data in 8-bit chunks.
• Program Memory (ROM) for permanent storage.
• Data Memory (RAM) for temporary data.
• Interrupts: External Interrupts 0 & 1, Timer Interrupts 0 & 1, Serial Port Interrupt.
• Four 8-bit programmable I/O ports.
• Built-in oscillator with 12 MHz frequency.
• CISC architecture with Von Neumann structure.
• Applications:
• Energy management, touchscreens, automobiles, robotics, medical equipment, and home automation.
• Examples:
• TVs, garage door openers, home security systems.
3.11.2 AVR Microcontroller
• Developed by: Atmel Corporation (1996).
• Architecture: RISC with Harvard structure for separate program and data memory.
• Types:
1. TinyAVR: Small size, less memory (for simple tasks).
2. MegaAVR: Moderate memory (up to 256 KB) for complex applications.
3. XmegaAVR: High-speed operations and larger memory for advanced tasks.
• Key Features:
• 16 KB Flash Memory.
• Internal oscillators and ADC (10-bit).
• Self-programmable Flash up to 256 KB.
• Operates at low voltages (1.8V).
• Applications:
• Home automation, robotics, biomedical devices, and automobiles.
3.11.3 PIC Microcontroller
• Developed by: Microchip Technology.
• Architecture: RISC (Reduced Instruction Set Computer).
• Key Features:
• High clock speed, efficient code execution.
• Supports Harvard architecture.
• Integrated special-purpose registers.
• USB/Serial port connectivity.
• Analog interfacing without additional circuitry.
• Applications:
• Smartphones, gaming peripherals, audio accessories, and advanced medical devices.
3.11.4 ARM Microcontroller
• Developed by: Acorn Computers (1985).
• Architecture: RISC-based 32-bit and 64-bit cores.
• Key Features:
• Multi-core processors for enhanced speed and performance.
• Fixed instruction length for faster processing.
• Compatible with Von Neumann or Harvard architectures.
• Widely used in mobile devices, wearables, and consumer electronics.
• Applications:
• Smartphones, tablets, multimedia players, and IoT devices.
3.11.5 Renesas Microcontroller
• Specialized for: Automotive and industrial applications.
• Key Features:
• Low power consumption with multi-core technology.
• Operates at 5V for industrial designs.
• High memory variants (up to 8 MB Flash/512 KB RAM).
• Integrated safety features for critical systems.
• Applications:
• Industrial automation, motor control, medical devices, and communication systems.
Comparison Table
Microcontroller Architecture Key Features Applications
8051 CISC 8-bit CPU, 4 I/O ports, Interrupts TVs, Home Automation, Robotics
AVR RISC Flash Memory, ADC, Low Voltage Touchscreens, Robotics, Operation Automobiles
PIC RISC High Clock Speed, Analog Smartphones, Medical Devices
Interfacing
ARM RISC 32/64-bit Multi-Core Processors IoT, Smartphones, Tablets
, Low Power
Renesas Multi-Core High Performance, 5V Operation, Industrial Automation, Motor Safety FeaturesControl
3.12 Applications of Microcontrollers (माइक्रोकंट्रोलर के उपयोग)
Microcontrollers are compact and cost-effective, used for measuring (मापन), monitoring (निगरानी), calculating (गणना), controlling (नियंत्रण), and displaying (प्रदर्शन) information in various devices and systems.
Key Applications (मुख्य उपयोग):
1. Automobile Industry (ऑटोमोबाइल उद्योग):
• Used in engine control systems (इंजन नियंत्रण प्रणाली), airbags (सुरक्षा तकिया), and ABS (एंटी-लॉक ब्रेकिंग सिस्टम)।
• Example (उदाहरण): Advanced driver assistance systems (एडवांस ड्राइवर सहायता प्रणाली)।
2. Consumer Electronics (उपभोक्ता इलेक्ट्रॉनिक्स):
• Found in devices like digital cameras (डिजिटल कैमरे), washing machines (वाशिंग मशीन), and ovens (ओवन)।
3. Test and Measurement Equipment (परीक्षण और मापन उपकरण):
• Examples include multimeters (मल्टीमीटर), oscilloscopes (ऑस्सिलोस्कोप), and function generators (फंक्शन जनरेटर)।
4. Communication Devices (संचार उपकरण):
• Found in printers, routers (राउटर), modems, and keyboards।
5. Light Sensing and Controlling Devices (प्रकाश संवेदन और नियंत्रण उपकरण):
• Examples: Automatic LED lights and motion-controlled streetlights।
6. Temperature Sensing Devices (तापमान संवेदन उपकरण):
• Examples: Microwave ovens (माइक्रोवेव ओवन) and smart thermostats (स्मार्ट थर्मोस्टेट)।
7. Fire Detection and Safety Devices (आग का पता लगाने और सुरक्षा उपकरण):
• Examples: Fire alarms (फायर अलार्म) and smoke detectors (स्मोक डिटेक्टर)।
8. Medical Devices (चिकित्सा उपकरण):
• Examples: Glucometers (ग्लूकोमीटर), blood pressure monitors (ब्लड प्रेशर मॉनिटर)।
9. Industrial Automation (औद्योगिक स्वचालन):
• Used in robotics (रोबोटिक्स), conveyor systems (कन्वेयर सिस्टम)।
10. Toys and Entertainment (खिलौने और मनोरंजन):
• Found in gaming consoles (गेमिंग कंसोल) and robotic toys (रोबोटिक खिलौने)।
3.13 Embedded Systems (एम्बेडेड सिस्टम)
An Embedded System is a combination of hardware (हार्डवेयर) and software (सॉफ़्टवेयर) designed for a specific task (विशिष्ट कार्य)। It can be part of a larger system or work independently.
Examples (उदाहरण):
• Fire Alarm (फायर अलार्म): Detects smoke and raises an alert।
• Washing Machine (वाशिंग मशीन): Performs pre-programmed wash cycles।
• Missile Guidance System (मिसाइल मार्गदर्शन प्रणाली): Guides missile trajectories।
3.13.1 Components of Embedded Systems (एंबेडेड सिस्टम के घटक)
1. Processor (प्रोसेसर):
• The central unit performing logical and arithmetic operations (गणितीय और तार्किक संचालन)।
2. Memory (मेमोरी):
• ROM (रीड-ओनली मेमोरी): Stores programs।
• RAM (रैंडम एक्सेस मेमोरी): Stores temporary data।
3. Peripherals (पेरिफेरल्स):
• Used for input/output (इनपुट/आउटपुट) operations। Examples: Sensors, keyboards।
4. Software (सॉफ़्टवेयर):
• Controls hardware functionality (हार्डवेयर की कार्यक्षमता)।
3.13.2 Characteristics of Embedded Systems (एम्बेडेड सिस्टम की विशेषताएं)
1. Dedicated Task (विशिष्ट कार्य): Repeatedly performs a single operation।
2. Compact Size (छोटा आकार): Fits on a single chip।
3. Real-Time Processing (रीयल-टाइम प्रोसेसिंग): Processes data instantly।
4. Low Power Consumption (कम ऊर्जा खपत): Extends battery life।
5. High Reliability (उच्च विश्वसनीयता): Consistently accurate performance।
3.14 Real-Time Embedded Systems (रीयल-टाइम एंबेडेड सिस्टम)
A Real-Time Embedded System responds to external stimuli within a fixed time frame (निर्धारित समय सीमा)।
3.14.1 Types of Real-Time Systems (रीयल-टाइम सिस्टम के प्रकार):
1. Hard Real-Time Systems (हार्ड रीयल-टाइम सिस्टम):
• Must meet strict deadlines (कठोर समय सीमा)।
• Examples: Flight control systems (फ्लाइट कंट्रोल सिस्टम), missile guidance systems।
2. Soft Real-Time Systems (सॉफ्ट रीयल-टाइम सिस्टम):
• Flexible timing constraints (समय सीमा में लचीलापन)।
• Examples: Weather monitoring systems, DVD players।
MCQs (बहुविकल्पीय प्रश्न)
1. What is the role of microcontrollers in automobiles? (ऑटोमोबाइल में माइक्रोकंट्रोलर की भूमिका क्या है?)
a) To control the engine
b) To operate the brakes
c) To manage seat adjustments
d) To regulate music systems
Answer: a) To control the engine
2. Which is an example of an Embedded System? (एम्बेडेड सिस्टम का उदाहरण कौन सा है?)
a) Personal Computer
b) Washing Machine
c) Desktop Monitor
d) Television Remote
Answer: b) Washing Machine
3. What is stored in ROM in an embedded system? (एम्बेडेड सिस्टम में ROM में क्या स्टोर होता है?)
a) Temporary data
b) Program instructions
c) User files
d) Sensor values
Answer: b) Program instructions
4. Which system must strictly meet timing constraints? (किस सिस्टम को कठोर समय सीमा का पालन करना होता है?)
a) Soft Real-Time System
b) Hard Real-Time System
c) General System
d) Flexible System
Answer: b) Hard Real-Time System
5. What is the primary characteristic of an embedded system? (एम्बेडेड सिस्टम की मुख्य विशेषता क्या है?)
a) High power consumption
b) Versatile functionality
c) Performs a specific task repeatedly
d) Requires external programming
Answer: c) Performs a specific task repeatedly
3.15 Microprocessor (माइक्रोप्रोसेसर)
A microprocessor is an Integrated Circuit (IC) (एकीकृत सर्किट) that contains the Central Processing Unit (CPU) (केंद्रीय प्रसंस्करण इकाई). It performs all computational and logical operations. Microprocessors need additional hardware like memory (मेमोरी) and input/output devices (इनपुट/आउटपुट उपकरण) to work, which are usually found on a motherboard (See Figure 3.27).
Key Function:
• Accept data from input devices (इनपुट डिवाइस से डेटा लेना)
• Process the data based on instructions (निर्देशों के आधार पर डेटा को प्रोसेस करना)
• Provide output through output devices (आउटपुट डिवाइस के माध्यम से परिणाम देना)
Examples:
• Intel Pentium, Core i3, i5, i7, i9 processors।
3.16 Evolution of Microprocessor (माइक्रोप्रोसेसर का विकास)
The first microprocessor, Intel 4004, was introduced in 1971. It contained 2300 transistors (ट्रांजिस्टर) and performed 60,000 calculations per second (प्रति सेकंड 60,000 गणनाएँ).
Important Milestones:
1. Intel 4004 (1971): First 4-bit microprocessor used in calculators (कैलकुलेटर)।
2. Intel 8086 (1978): 16-bit microprocessor, used in early personal computers।
3. Intel 80386 (1990): First commercially available 32-bit microprocessor, capable of multitasking।
4. Pentium (1993): Introduced onboard math coprocessor and higher efficiency।
5. Core Processors (2006): Dual-core and quad-core processors introduced, enabling faster speeds and parallel computing।
3.17 Major Parts of a Microprocessor (माइक्रोप्रोसेसर के मुख्य भाग)
1. Arithmetic Logical Unit (ALU):
• Performs all arithmetic (गणितीय) and logical operations (तार्किक संचालन)।
• Example: Addition, subtraction, comparison, etc.
2. Control Unit (CU):
• Controls the execution of instructions (निर्देशों के निष्पादन को नियंत्रित करता है)।
• Manages data transfer between memory and I/O devices।
3.18 Characteristics of Microprocessor (माइक्रोप्रोसेसर की विशेषताएँ)
1. Instruction Set (निर्देश सेट):
• The set of instructions a microprocessor can execute।
2. Word Length (शब्द लंबाई):
• The number of bits (बिट्स) the processor can handle at once।
• Common word lengths: 8-bit, 16-bit, 32-bit, 64-bit।
3. Clock Speed (क्लॉक गति):
• Number of pulses per second for processing data।
• Measured in MHz (मेगाहर्ट्ज) or GHz (गीगाहर्ट्ज)।
3.19 Classification of Microprocessors (माइक्रोप्रोसेसर का वर्गीकरण)
1. Based on Bit Width (बिट चौड़ाई के आधार पर):
• 8-Bit Microprocessor: Processes 8 bits at a time।
Example: Intel 8085।
• 16-Bit Microprocessor: Processes 16 bits at a time।
Example: Intel 80286।
• 32-Bit Microprocessor: Used in PCs, capable of multitasking।
Examples: Intel 80386, Pentium, AMD Sempron।
• 64-Bit Microprocessor: Used in servers and high-end workstations।
Examples: AMD Athlon, Intel Core i9।
2. Based on Instruction Set (निर्देश सेट के आधार पर):
• CISC (Complex Instruction Set Computing): Used in desktops and servers।
• RISC (Reduced Instruction Set Computing): Used in appliances like ovens and air conditioners।
• EPIC (Explicitly Parallel Instruction Computing): Combines features of RISC and CISC।
MCQs (बहुविकल्पीय प्रश्न)
1. What is the primary function of a microprocessor? (माइक्रोप्रोसेसर का प्राथमिक कार्य क्या है?)
a) Data storage
b) Data processing
c) Data transfer
d) Data deletion
Answer: b) Data processing
2. Which was the first commercially available microprocessor? (पहला वाणिज्यिक माइक्रोप्रोसेसर कौन सा था?)
a) Intel 8085
b) Intel 80386
c) Intel Pentium
d) Intel Core i3
Answer: b) Intel 80386
3. What does clock speed measure? (क्लॉक गति किसे मापती है?)
a) Memory size
b) Processing speed
c) Bit width
d) Instruction set
Answer: b) Processing speed
4. Which processor is commonly used in high-end workstations? (हाई-एंड वर्कस्टेशन में कौन सा प्रोसेसर सामान्यतः उपयोग होता है?)
a) 16-bit processor
b) 32-bit processor
c) 64-bit processor
d) 8-bit processor
Answer: c) 64-bit processor
5. What does RISC stand for? (RISC का पूर्ण रूप क्या है?)
a) Reduced Instruction Set Computing
b) Random Instruction Set Computing
c) Reliable Instruction System Configuration
d) Recursive Instruction Set Coding
Answer: a) Reduced Instruction Set Computing
3.20 CISC (Complex Instruction Set Computer)
CISC stands for Complex Instruction Set Computer (जटिल निर्देश सेट कंप्यूटर). It is a type of microprocessor architecture that includes a large and complex set of instructions. CISC processors are designed to provide advanced processing capabilities in the most efficient manner.
Features of CISC (विशेषताएं):
1. Large Instruction Set (बड़ा निर्देश सेट):
• CISC processors have a wide range of instructions, making complex tasks easier for programmers to execute quickly.
(Instruction Set: A collection of instructions that a processor can execute - निर्देश सेट: प्रोसेसर द्वारा निष्पादित किए जा सकने वाले निर्देशों का संग्रह)
2. Multiple Addressing Modes (एकाधिक पता मोड):
• Various addressing modes allow flexible storage and retrieval of data. (Addressing Modes: डेटा को स्टोर और पुनः प्राप्त करने के तरीके)
3. Microprogramming (माइक्रो प्रोग्रामिंग):
• Each instruction is executed through a microprogram stored in ROM (Read-Only Memory - केवल पठनीय मेमोरी), enabling easy updates if errors occur in the microinstructions.
4. Complex Design but Less Efficiency (जटिल डिजाइन लेकिन कम प्रभावशीलता):
• CISC processors are complex (जटिल) and expensive (महंगे) but less efficient (प्रभावी) in performance compared to RISC processors.
Example (उदाहरण):
• Cyrix 6x86 Processor: A 32-bit CISC processor supporting advanced instruction sets.
3.21 RISC (Reduced Instruction Set Computer)
RISC stands for Reduced Instruction Set Computer (सरल निर्देश सेट कंप्यूटर). Unlike CISC, RISC processors focus on simple and smaller instruction sets that can be executed very quickly.
Features of RISC (विशेषताएं):
1. Small Instruction Set (छोटा निर्देश सेट):
• Contains only essential and simple instructions (आवश्यक और सरल निर्देश).
2. Fixed Instruction Format (निर्धारित निर्देश प्रारूप):
• Easy-to-understand and fixed-length instructions (समझने में आसान और स्थिर लंबाई वाले निर्देश).
3. Fewer Addressing Modes (कम पता मोड):
• Reduces complexity (जटिलता) in data storage and retrieval (डेटा स्टोरेज और पुनः प्राप्ति).
4. Hardwired Control (हार्डवायर्ड नियंत्रण):
• The control mechanism (नियंत्रण तंत्र) is embedded in the hardware, improving processing speed (प्रसंस्करण गति).
5. High Speed (उच्च गति):
• RISC machines are 5 to 10 times faster than CISC machines (RISC मशीनें CISC मशीनों से 5 से 10 गुना तेज हैं).
Example (उदाहरण):
• Sun Microsystems SPARC, Intel i860, Motorola 88000.
3.22 EPIC (Explicitly Parallel Instruction Computing)
EPIC stands for Explicitly Parallel Instruction Computing (स्पष्ट रूप से समानांतर निर्देश कंप्यूटिंग). It combines the best features of both RISC and CISC architectures.
Features of EPIC (विशेषताएं):
1. Parallel Processing (समानांतर प्रसंस्करण):
• Processes multiple instructions simultaneously (एक साथ कई निर्देशों को संसाधित करता है).
2. Instruction Bundles (निर्देश बंडल):
• Bundles of instructions include details on how to execute them in parallel with others (निर्देश बंडल में समानांतर निष्पादन के तरीके शामिल हैं).
Example (उदाहरण):
• Intel Itanium Processor (इंटेल इटेनियम प्रोसेसर).
3.23 Architecture of Microprocessor (माइक्रोप्रोसेसर की संरचना)
The architecture (संरचना) of a microprocessor describes its physical layout and how information and electrical signals flow within it. Microprocessors have evolved from single-core (एकल कोर) to multi-core (मल्टी-कोर) architectures, enabling faster simultaneous processing of multiple tasks.
Key Components of Microprocessor Architecture (मुख्य घटक):
1. CPU (Central Processing Unit - केंद्रीय प्रसंस्करण इकाई):
• Often called the “brain” of the computer (कंप्यूटर का मस्तिष्क).
• Handles arithmetic, logic, and data operations (गणितीय, तार्किक और डेटा संचालन).
Key Parts of the CPU:
• Arithmetic Logic Unit (ALU - अंकगणित और तार्किक इकाई): Performs calculations and logical comparisons (गणनाएं करता है और तार्किक तुलना करता है).
• Control Unit (CU - नियंत्रण इकाई): Decodes instructions, generates control signals, and manages data flow (निर्देशों को डिकोड करता है, नियंत्रण संकेत उत्पन्न करता है और डेटा प्रवाह प्रबंधित करता है).
2. Input/Output Devices (इनपुट/आउटपुट डिवाइस):
• Input Devices: Allow data entry into the system (डेटा को सिस्टम में दर्ज करने की अनुमति देते हैं).
• Output Devices: Display processed data (संसाधित डेटा प्रदर्शित करते हैं).
3. Memory (मेमोरी):
• RAM (Random Access Memory - रैंडम एक्सेस मेमोरी): Temporary storage for data and instructions (डेटा और निर्देशों के लिए अस्थायी भंडारण).
• ROM (Read Only Memory - केवल पठनीय मेमोरी): Stores permanent instructions (स्थायी निर्देश संग्रहीत करता है).
3.24 Microprocessor vs Microcontroller (माइक्रोप्रोसेसर बनाम माइक्रोकंट्रोलर)
Microprocessor (माइक्रोप्रोसेसर) Microcontroller (माइक्रोकंट्रोलर)
Acts only as a CPU (केवल CPU के रूप में कार्य करता है). A mini-computer with CPU, RAM, ROM, and I/O ports (CPU, RAM, ROM और I/O पोर्ट वाला मिनी-कंप्यूटर).
Used for general-purpose systems Used in embedded and automated devices (एंबेडेड और (सामान्य प्रयोजन प्रणाली के लिए उपयोग किया जाता है). स्वचालित डिवाइस में उपयोग किया जाता है).
External memory and I/O components required Built-in memory and I/O components (इन-बिल्ट मेमोरी और (बाहरी मेमोरी और I/O घटक आवश्यक). I/O घटक).
Larger circuit size (बड़ा सर्किट आकार). Compact circuit size (छोटा सर्किट आकार).
Consumes more power (अधिक बिजली की खपत करता है). Consumes less power (कम बिजली की खपत करता है).
MCQs (वस्तुनिष्ठ प्रश्न)
1. What does CISC stand for?
a) Complex Instruction Set Computer
b) Compact Instruction System Control
c) Central Instruction Set Computer
d) Common Instruction Set Computer
Answer: a) Complex Instruction Set Computer
2. What is a key feature of RISC?
a) Complex instruction set
b) High speed and simple design
c) More memory
d) No hardwired control
Answer: b) High speed and simple design
3. What does EPIC focus on?
a) Serial processing
b) Parallel processing
c) Sequential processing
d) Single processing
Answer: b) Parallel processing
4. What is the role of ALU in a CPU?
a) Storage
b) Processing arithmetic and logic
c) Input-output handling
d) Power supply
Answer: b) Processing arithmetic and logic
5. Which is better for compact systems?
a) Microprocessor
b) Microcontroller
c) Both equally
d) None of the above
Answer: b) Microcontroller